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INTRODUCTION



e One of the dual pairs in the AdS/CFT correspondence is:
1B string theory on AdS; x S° x T* and

N = (4,4) SCFT on the symmetric product of T4,

AdS5 x S? x T* arises as the near horizon geometry of D1-D5 system.
e An aspect less explored in this dual pair is that of integrability.

e On can easily show that the sigma model on AdS5 x S? is classically
Integrable.

It admits an infinite set of non-local charges.

Given a sigma model based on a group manifold

/ Tr(dg~'0g)

Let us define
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One can construct a one parameter family of flat connections
A
1 Fax
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Then the following quantity is independent of time
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This serves as the generating function for the charges.
Since the sigma model on AdS3 % 53 is based on the supergroup

SU(1,1]2) the above argument works for this case.



e It might be possible to determine the complete spectrum of strings in this

system using integrability.

e This can help to understand the states of the symmetric product conformal

field theory better.

e One of the well studied black hole background in string theory admits the
near horizon geometry BT 7 x S°.

The BTZ geometry is obtained from Ad S5 by discrete identifications.

The integrable structure present in the case of Ad S5 is preserved under

these identifications.



e Recall certain features of integrability for the case of AdS5 x S°.

Magnon states played an important role in this case.

e Magnons are BPS they obey the dispersion relation

E—J—\/ + f(A )smg

where:

A is the t'Hooft coupling,

P is the momentum of the magnon,
L the energy,

J the R-charge.

® Since they are BPS they can be identifed as states both in the field

theory and as classical solutions of the string sigma model on

AdS5 X S5



e Using their supersymmetric properties and integrability it is possible to

determine the S-matrix upto a phase.
e The phase is constrained by crossing symmetry.

® There is a conjectured exact expression for the phase. This agrees with
the semi-classical expansion of the phase determined by studying

scattering of the magnons.



e The D1-D5 system also admits magnons states.

e \We wish to determine:
e The dispersion relation of the magnons.

e The S-matrix of the magnons.



MAGNONS: DEFINITION



e Boundary CFT of the D1-D5 system: \/ = (4, 4) CFT on a resolution of

the symmetric product orbifold

M = (T")%% /S(Q1Qs5).

The global part of the N/ = (4, 4) algebra is the
SU(1,1]2) x SU(1,1[2).
Bosonic part: (SL(2, R) x SU(2)) x (SL(2,R) x SU(2)) .

e The chiral primaries of the CFT satisfy the condition:
LO — JB, zo — j3

They are the ground states in Z; twisted sector of the orbifold with charge:

(J;lngl)




e The subgroup which leaves the chiral primaries invariant:

consists of a left moving

SU(1|1) x SU(1]1)

and a right moving:

SU(1|1) x SU(1|1)

e Let us focus on the subgroup SU(1|1) x SU(1[1).

{Q17S1} :C17 {Q27SQ} :CQ
{Q1,Q2} =0, {S1,52} =0,
{Qh SQ} = 0, {Sh QQ} = 0.



'y, C5 are central elements of the algebra.

e Magnon Excitations are the following excitations above the chiral primary

| Opy s Py ) g @ |0) g = S S+, 10) s @0) .

where
J

= €™y,

k=1

and ./, is the lowering operator of the left moving SU(2) R-current of the
k-th copy of the torus involved in the Z ; twisted sector.
To satisfy orbifold group invariance condition we need to impose the

Zpi = 0.

condition



MAGNONS:THE DISPERSION RELATION



e The dispersion relation of these magnons is obtained from the BPS

condition as a result of a central extension of SU(1|1) x SU(1|1)

e The centrally extended algebra is

{Q1,5:1} = Ch, {Q2, S2} = Oy,
{Q1,Q2} = C5 —iCYy, {S1,5:} = Cs +1CY4,
{Qh 52} = 0, {51, QZ} = 0.

Extended by more central charges: C'5, (5.
Consistent with the condition: QT = S

e The centrally extended algebra is a \/ = 2 Poincaré algebra in 2 + 1

dimensions.



e The BPS condition is given by

(C1+ Cy)* = (O] — Cy)? + 4(C35 + C?)

e It can be shown that using
e Conformal pertubation theory on the symmetric product.

® Supersymmetric properties of magnons as solitons of the string sigma

model

A single magnon is BPS and carries the following values for the central

charge

Cs —iCy=ale™™ —1), C3+i0y=a*(e? —1),
61—02:1, Cl—|—CQIE—J



e Substituting the values of the central charges in in the BPS condition we

obtain

E—J_\/1—|—169281n2§

where g = |« is a function of the parameters of the D1-D5 system.

The dispersion relation for () magnons is given by

E—J= \/Q2+16928m2§

e From the first order perturbation theory in the symmetric product orbifold

15

T

we see
16g° = \?




where A\ is the strength of the marginal perturbation which resolves the

symmetric product orbifold

e From the dispersion relation of the magnons obtained using the sigma

model we see

TO 72

where R is the radius of S” and Jg IS the 6d-string coupling.

e A natural identification is A = ¢, then the function g remains the same

through out the parameter space of the D1-D5 system.

e \We will show that this holds true at one loop in the sigma model

perturbation theory.



e For further discussion we adopt the following intrinsic parametrization

e Introduce the spectral parameters ", x
+

x_ _ eip

T

subject to the constraint

Let



e Then the central charges carried by the magnon are given by

Ch+ Cy = 2gc — 1, 0:03—104:04(%—1),
o+
C=0C+i1Cy=a"(——-1), Ci=gc, Cy=gc—1.

X



THE S-MATRIX FOR THE MAGNONS



e The S-matrix for the scattering of two magnons is constrained by

symmetries and integrability.

e We need the following facts about SU (1|1) algebra:

{Qla Sl} — Cl-

It admits a charge 5 which obeys
B,Q1] = =20, |[B,5] =25
The quadratic Casimir is given by

J =2|Q1,51| +{B,C1}.

e The S-matrix acts on the tensor product of the two magnon Hilbert space



It can be written as

S12 = P1aRio
where P15 is the exchange operator and 725 is the R-matrix.

e Invariance under the sum of the SU (1|1) generators of the two magon

Hilbert space constraints the /Z-matrix to the form
Ria = X12TW + Y, 712

X192, Y19 are scalars depending on the spectral parameters of the
magnons.

7U2) is the identity. 7' is the quadratic Casimir of the sum of the
SU(1]1) generators of the two magon Hilbert space.

e The R-matrix satisfies the unitarity constraint and the Yang-Baxter



relations.

73127?/21 — 1127 731273137323 — 7?/237?/137?/12-

e Imposing these conditions determines the scalars X5 and Y7, as
X12 = X12 eXp(i@(m)), Yio = Yo 6XP(¢®(12))

X129, Y19 are explicitly known functions of the spectral parameters.

The phase 015 is not fixed, but satisfies the unitarity constraint



e To summarize the S-matrix constructed satisfies the following invariance
properties under SU(1]1) x SU(1|1).

QY @1+ (-1 Q.81 =
SV @1+ (1) @S, Si] =
cWSM @ P + (—1)FC @ 0P8 Spy) =
CVQyY @ ¢y + (-1)Cy) @ CPQY, 81] =

o O o O




e The action of the S-matrix on the two magnon state can be explictly written
as

rt —

N\ 2
Siclome) @ 10) = Sua* %) (=) [0 ) 10

:L’i, yjE parametrizes the rapidity parameters of the first magnon and
second magnon respectively.

So(:z;i, yi) IS the undetermined phase factor.



e \We parametrize the phase factor as

So(xiwi) — 0BpS X UQ(QSiayi)a
- 1= -1
_ X Yy x+1y v 02(xi,yi),

where

T =Y zty~
1
x~yt

This is done so that difference in the phase factor from the A/ = 4 case is
captured in the function o (2=, ™).




eTo summarize;:

e Symmetries and Integrability constrain both the dispersion relation and

the S-matrix.

e For the case of dispersion relation, the undetermined part lies in the

function g and its dependence on the parameters of the D1-D5 sysem.
e For the case of the S-matrix the undetermined part is the phase factor.

e We will now determined both these to one loop in the sigma model

coupling.



MAGNONS AT STRONG COUPLING



e At strong coupling magnons are classical solutions of the string sigma

model in AdS; x S2.

e There are 3 interesting limits at strong coupling

e Plane wave limit;

g — 00, k =2gp fixed, () fixed

The dispersion relation reduces to

E—J=+Q*+k

The spetral parameters are real eg. for a single magnon

1
x+~x_:7“:%(1+\/1+k2)



e Giant magnon limit:
g — 00, ., p, () fixed

The spectral parameters lie on the unit circle

1
T~ — ~exp (zz—?)
(. 2

e Dyonic giant magnon limit
g— 00, () — o0, —,p fixed

The spectral parameters in this case are complex and of O(go) since

1 1
$+—$_—|————:7LQ
AN qg



e From the dispersion relations obtained in these limits it is seen

R2
dg = —, for g — ©
T

e Possible corrections: organized in sigma model perturbation

dg =

substituting this in the exact form for the dispersion relation we obtain

R? R*  _

1
— ) + ..

E—J=

. 1_9‘ . 1_9‘ 5
i 5 + 9o sin 5 + O(

mao!

e We will show that the one loop term g vanishes.



e \We have parametrized the undetermined phase factor in terms of the

function

U($i7yi) _ eie(azi,yi)

e The phase factor admits a semi-classical expansion

1 1
0z, y%) =g (90($i,yi) + gﬁl(xi,yi) -+ E@g(xi,yi) + .- ) .



THE LEADING PHASE FACTOR



e The leading semi-classical phase shift 0y (2=, 17~) can be evaluated from

the two magnon classical solution.

e Compare the solution at ¢ — =00 to the single solition solution.
Evaluate the time delay for A7'}» relative to free propagation.

Then the semi-classical phase shift is given by

00 (P1 : pz)
0E,,

e The time delay just depends on classical solution.
The classical solution is a string configuration in /& X S°.
Thus the time delay must be the same as for the case of AdS5 X S° for

which the magnons are oriented along a S° in S°.

e This implies that the semi-classical phase shift must be the same as that



evaluated for the case of AdS; x S°

Oo(x™, y*) = k(z™,y") — k(=" y7) —k(z™,y") + k(z™,y7),

o [(o+2) -+ -2)

e As a simple check we can explicitly evaluate the phase shift for the

where

magnons in X X 5% in the giant magnon limit and compare with the above

expression.

We obtain agreement.



ONE-LOOP CORRECTIONS



e One-loop corrections to the dispersion relation and to the phase shift are

evaluated by

Np
1 > 0dr(k:
AE(p):%Z(—l)FI/ dk fék’m k2 + 1.
1 O 001 (k; 1)
291(]717]?2) — E (_1) dk Ok 5](]{7,]72)
I=1 —o©
351(k3p2)

5(l<7; p) be the phase shift corresponding to the scattering of a plane wave
off the either a giant dyonic magnon with momentum p.

k is the wave number of the plane wave. [ labels the fluctuations of the



magnons with Bose/Fermi statistics depending on the sign of (—l)Ff.

e Thus the problem is reduced to the evaluation of the phase shifts for

various plane wave fluctuations about a background magnon.

e This can be evaluated by the strategy: Consider a n + 1 giant dyonic
magnon solution.
Take a plane wave limit on one of them

Then this magnon becomes the plane wave fluctuation.

e Let us parametrize S* as

{(ZhZZ) : ‘Zl‘Q‘I—‘ZQ‘Q — 1} — g=



Then the plane wave phase shifts are

o7, = 0,
0z,(r) = 0,
- +
5y, — —[2iln<r m)—iln<$—>].
r—x X
= -2
, r—at | Il
0z,(1/r) = [221n<T_$>—zln (aj—)]
= 2G

r Is the spectral parameter of the plane wave and is related to its wave

number and frequency as

2r r? 4+ 1
r2 —1’ r2 —1

k::




e For coordinates in Ad.S3, since they couple trivially, fluctuations along

these do not suffer phase shifts. Indeed

Sy, = Oy, = 0Ys = by, = 0

e Fermionic coordinates of S° and AdS are coupled due to the presence
of RR fluxes.
Let the superpartners of the coordinates /5 and Y5 be the complex fermions

6 and 7) respectively. The the phase shifts along these directions are
0p =0, = —G(r,z%), 05=20;=G(1/r,a™)

These relations are obtained using the properties of the sigma model
supergroup SU (1, 1]2).



e Substituting these values for the phase shifts in the expression for the one

loop energy
1
+\ 2 2 J _ _
2TAE(x™) = dr\/k(r)2 +m o 0z, + 0z, — (09 + 0y + g + 05)]
~1
L 0
_ / dry/K(rf +m? - [<2G(ra*) +2G(1/ria*)
1 r

—2G(1/r, xi) +2G(1/r, mi)} 7
= 0.

Thus we conclude that the formula

IS exact to one loop.



e The one loop correction to the scattering phase:

291($:t7y:t)

1 o 0G (r, xt) N 0G(L, ) 1
Y [/1 o or Gry”) +/1 o or G(;,y |

_( = — yi)7

This can be arranged as
20, (2%, y%) = xa (e y") = xale y7) —xale ™ y) FxaleT,y0),

and Y /(z, 1) has an expression in terms of dilogarithms.

1

Xl(xay) — _%[ll(gjay)_[1(y7$)—|_[2($7y)_[2(y7$)]°






CROSSING SYMMETRY AND UNITARITY
CONSTRAINTS



e Crossing symmetry relates the scattering matrix of a particle to that of its

anti-particle.

C_l & ISS(_pMPQ)C 024 1812(}?17])2) — I?
I ® 0_151T22 (p1, —p2)I ® CSi12(p1,p2) = 1.

C is the charge conjugation operator. This implies the following equations

for the phase factor

SO(may)SO(éﬂy) — f(ﬂ?,y)

So(2, 9, Solx, 5) — f(z,y)



Unitarity then implies
1
flay)fy.—) =1

e Crossing symmetry and unitarity leads to the following constraint on the

phase factor

+ + 1 1
In 2 +10(x,y) I —if (—,—) = 0.
y x LY

e \We can substitute the expansion

Oz, y) = gbo(x,y)+01(z,y)+---.



and note that t/y(x, 1) satisfies

1 1 + +
g0, (—, —) = gbty(z,y) +11n (az_) —i1n (y_) .
LY L y

11
n(L2) =
Ly

e This results in the fact that the contraint following from crossing symmetry

and

and unitarity is statisfied to one loop.



SUMMARY



e \We used symmetries and integrability to constrain the form of the

dispersion relations and the S-matrix for the magnons in AdSs X S3.

e \We obtained information about the dependence of the coupling g on the
parameters of the D1-D5 system and the phase factor to one loop using

semi-classical methods.



